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We consider the optimal control of the tracking process in a system described either by 
linear differential equations or by recurrent algebraic equations. In Sects. 1 and 2 we 

set out the basic equations of tracking theory. The optimal tracking problem is formu- 
lated in Sect. 3, Sect.4 contains some solutions of the basic equation. Sections 5 and 6 
concern sample continuous and discrete tracking problems. Various aspects of tracking 
theory have been investigated elsewhere (see p-31). For example, basic equation (2.5) 

was derived in [l]. Our formulation of the tracking problem follows [4]. We assume, how 
ever, that random perturbations affect not only the measuring device, but also the motion 
of the object. 

1. Tha discrete-time proccaa. Let the state of a system be described by 
the n-dimensional phase coordinate vector 5 (t),and let the time t assume discrete 

values t,, tr, . . ., tN= T, where tk< tk+i for all k = O,l, . . ., N - 1. The 
state of the system is measured (tracked) at the instants t k; the results of these measure- 
ments are the IA-dimensional vectors y (t,J . We assume that the motion (variation of 
state) of the system and the measurement process are specified in the form of the linear 
relations 

~r:&+r) =A,z(t,)+b,+F,g(t,) (k=O,l,...tN--1) (1.1) 

Y(t,j = QcVd+rl(t,) (k=O,l,...,W (l-2) 
Here E (tk) and ‘I (t J are random vectorial quantities of dimensions m kand I, , 

respectively. These quantities characterize the perturbations acting on the obiect and 
the measurement errors. We assume that the random quantities E (tk) and q (ts) 
are independent of each other for all k = 0, I. . . ., N - 1 and s = 0,1,. . ., N. 
We also assume that the quantities E (tk), q (tk) have zero mathematical expectations 
and that their correlation matrices Gk(of dimensions mk X mk) and B,(of dimensions 

Zk X Zk) are known. The term “correlation matrices” refers throughout the present 
paper tourmormalized correlation matrices (second-moment matrices). 

Our assumption that the mathematical expectation of E (tk) is zero does not reduce 
generality, since this mathematical expectation can always be included in the vector 
bR; the equality to zero of the mathematical expectation of 11 (tk) is equivalent to the 
absence of a systematic measurement error. The nXn matrixAR,thenXmkmatrix 

Fk, the 1 k X n matrix QA, and the ?Z -dimensional vector bkappearing in Eqs. (1. l), 

(1.2) are assumed to be given. The matrix Qkcharacterizes the composition of the 
measurements made at the instant tk. 

Let the stochastic distribution of the vector 2 (t, - 0) at the instant t, - 0 directly 
preceding the start of the prccess be known. We assume that this distribution is also nor- 
mal, having the mathematical expectation x0 and the correlation matrix Da. The purpose 
of tracking is to be able to indicate the mathematical expectation and the correlation 
matrix of the phase-coordinate vector at any instant. These quantities (the mathemati- 
cal expectation and the correlation matrix) vary first by virtue of equations of motion 
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(1.1) and second as a result of the measurements. We assume that all of the stochastic 
distributions are normal and that the measurement results are treated by the maximum- 
plausibility method [6]. 

We denote the mathematical expectation and correlation matrix for the vector 

5 (tk - 0) (i.e. directly prior to the k,th measurement) by zkand D I;, and the same 

quantities at the instant t, + 0 (i.e. directly after the kth measurement) by ok* and 
D k*. Using the mayimum-plausibility method, we can show that the relations 

Jo* = 2k +D,*Qk'Bk-l [y (tk) - Qkzkl,Dk* = (D,-l + Qk'BilQ,J1 
(k=O,l,...,N) (1.3) 

are valid. Here the primes denote transposes, and the exponents - 1 inverse matrices. 
Formulas (1.3) are derived in [4]. There are no measurements between the instants t k 

and t k+r ; the variation of the vector z (tk) during this interval is described by Eq.(l.l). 
Computing the mathematical expectation and the correlation matrix of both sides of 

linear equation (1.1). we obtain 

Zk+r = * 4,zk* + bkr D,,, =AkDk*Ak’ + FkGkFk’(k=O,l,...,N-l) (1.4) 

Recursion relations (1.3). (1.4) describe the variation of the mathematical expectation 
and dispersion of the vector I (t) as a result of the tracking process and motion of the 
object. In order to carry out computations by means of these formulas we must specify 

the matrices and the vectors 4 k, bk, Pk occurring in equations of motion (1. l), the 
matrices Qi, characterizing the composition of measurements, the random perturbation 
correlation matrices Bk and Gk , the initial values x0 and D,, as well as the results of 

measuring Y (tk). 

2. The contlnuoua-time proce#a. We can consider the case of continuous 
time by taking the limits in the relations of Sect. 1 ( *). Let us set 

‘6= 
T - t,, 
.N’ t,=t,fh (It=O,l,...,N) (2.1) 

and introduce matrices -4 (t), F (t), Q (t), B (t), G (t), D (t) and the vectors b (t), 
z (t) such that 

Ak = ~3 + ~4 (tk), bk = zb (tk), Fk = TF (tk)r Qk = Q (td 
B, = 7-l B (t k), G, = a-lG (tk), D, = D (td, Xk = 2 (tk) (2.2) 

HereE is an n >< n identity matrix. 

Let us substitute relations (2. l), (2.2) into Eqs. (1. l), (1.2) and take the limits as 
t--+0, N + ~0 for N’G = T--t,,=const. This yields (2.3) 
C&E (t) = [A (0 II: (t) + b (t) + F (t) E (t)l dt, y (t) = Q (t) x (4 + rl (t) 

Let us substitute Eqs. (2.2) into (1.3). expand them in powers of r , and omit small 
quantities of order higher than the first, 

xk* = z (tk) + 70 (tk) 0' @k)Bml (tk) [Y ltk) - Q ctk) 2 ctk)] 

Dk* = {D-l (tk) [E + aD (tk) Q’ (tk) B-l (tk) Q (tk)]} -’ = 

= D (tk) - a ltk) Q' ctk)B-l ctk) Q ctk)D ctk) 

l ) A stricter derivation is possible on the basis of random process theory (see [l, 21). 
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Next, we substitute these relations as well as Eqs. (2.2) into formulas (1.4) and once 

again omit higher-order small terms, 

D (tk+l) = D (tk) + ‘G IA( (tk) +D ([,)A’ (to;) - 

- D (tk) Q’ (fk) B-l (tk) Q (tdD (f,:) t- F (td G (tr:) F’ (tii)] 

Taking the limit as -G -+ 0, we obtain the differential equations [l] 

dz = [AZ + b + D Q’B- l (y - Qz)] dt (2.4) 

dD / dt =: AD + DA’ - DQ’B-IQD + FGF’ (2.5) 

Here we have omitted for simplicity the explicit dependence of all functions on t. 

The initial conditions for Eqs. (z&4),(2. 5) are of the form z (t,) = x,,, D (t,) = D, 
and specify the mathematical expectation and correlation matrix for the phase vector 

j: (to) at the start of the process. 

Both recursion relations (1.3). (1.4) for discrete-time process (1. l), (1.2) and differ- 

ential equations (2.4), (2.5) for continuous-time process (2.3) describe the evolution of 

the mathematical expectation and correlation matrix for the phase vector. We note that 

in contrast to the corresponding equations for the mathematical expectation, Eqs. (1.3), 

(1.4), (2.5) for the correlation matrix are independent, first, of the vectors b ,; or (I (I) , 
and, second, of the measurements of y (t). Equations (1.3), (1.4), (2.5) for the correlation 

matrix are therefore ordinary (nonstochastic) equations and can be solved prior to the 

execution of tracking operations. 

It is advisable to consider differential equations (2.4), (2.5) instead of discrete equa- 

tions (1.3), (1.4) if the measurements are carried out either continuously or discretely, 

but with sufficient frequency. The function .U (t) characterizes the measurement error 

per unit time. Equations (2.4),(2.5) are also applicable if the process is described by 

differential equation &3), and if the measurements are made at discrete instants. The 

function /P (t) can then be expressed as a sum of delta functions of time. 

Further on we shall use Eq. (2.5) to consider the optimization of the tracking problem 

for a system described by differential equation (2.3). We assume that the matrices 

.1 (!i. F (1). Q (t), I: (t). G (1) occurring in the right side of Eq. (2. 5) are known. The 

dimensions of these matrices are, respectively, ?z X n, JZ Y VI, 1 : n, 1 : 1. m > II). 

Here 111 (t) is the dimension of the random perturbation vector E and 1 (1) is the dimen- 

sion of the vector !I, i. e. the number of scalar parameters measured at the instant t. 
These dimensions can vary during motion. 

3. The optimal tracking problem. Let us introduce the notation 

I- (t) = Q’ (t) B-l (t) Q (t), K (t) = F (t)G (t) F’ (t) (3.1) 

and rewrite Eq. (2. 5) in the form 

dD/dt==AD+DA’-DVD+K, D (to) = Do (3.2) 

Relations (3.1) imply that the matrices 1’ (1) and’ K (1) have the dimensions n ” n 
and that they are symmetric and positive-definite, since these properties are also exhi- 

bited by the matrices B and G. The matrix V characterizes the tracking process and 

depends on the composition of the measurements (i.e. on the matrix Q) and on their 
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exactness (i.e. on the matrix B). In particular, if no measurements are made then 

l7 = 0. The matrix K characterizes the perturbations acting on the object. 
If the tracker is able to vary the set of measured parameters or the accuracy of meas- 

urements, then the matrix I’ in matrix equation (3.2) can be considered as a controlling 

function. The role of the phase coordinates in system (3.2) is played by the elements 
of the correlation matrix D. By virtue of the symmetry of the matrix D, the number of 
distinct elements is n (n + 1) / 2. 

The controlling function I7 can be subjected to the restrictions 

1’ (t) E U (t), t, ,< t .< T (3.3) 

where U (t) is the closed set of matrices characterizing the tracking possibilities. Let 

us introduce the functionals T n 

J, = 1 f(V, qco, 
to 

J = 2 u,,(T,) qjq, 
i, h=l 

(3.4) 

Here the scalar function/ is defined for all t E [t,. T] and V (t) E ,r~ (t). By 
Dj fi (TJ we denote the elements of the matrix D at the fixed instant i”, ( t, < T*,< 

-I. T, and by qj the components of the given nonzero n-dimensional vector q. The 
functional J, in (3.4) characterizes the cost or duration of the tracking process ; the 
function f is the cost of tracking per unit time. 

For example, let the tracker have the option at any instant either of making the meas- 
urements in a set way (with the matrix I:a) or of making no measurements whatever. 

The set U for any t then consists of the two matrices 0 and v,. If we set 

f (0, t) = 0, f (I,, t) = 1 

in (3.4), then the functional J,, is equal to the duration of observation. 
It is clear that the functional J of (3.4) is equal to the dispersion of the following 

linear function of the phase coordinates at the instant 1’*: 

2 = (4, x: (TJ) (3.5) 

The parentheses denote the scalar product of the vectors. 
We can now pose various problems of tracking optimization as optimal control prob- 

lems for system (3.2). The system of equations, the initial conditions, and the restric- 
tions on the controlling functions are specified by Eqs. (3. A), (3.3). It is natural to spe- 
cify the functional to be minimized either as the integral functional Jo (the cost or 

duration of tracking) or in the form of the functional J from (3.4) ; this is equivalent 

to minimizing the dispersion of the quantity (3. 5). In the former case we can impose 
conditions of the form J i < c’~, where the ,I, are functionals of the type j from (3.4) 
and fi>Uaregivennumbers I--I,..., s. These conditions mean that the accuracy 

of determining certain parameters of the form (3.5) must fall within the specified range. 
In the latter case we can impose conditions of the form Ji < o,, L -- 1, . . S, as well 
as a restriction on the cost or duration of the observations of the form Jo < v,,, where 
(‘” > 0 is a given constant. 

4. Integration of the basic equation. Let us change variables by setting 

1) = I’-’ in nonlinear matrix equation (3.2). Clearly (see also [4]), this equation then 
becomes cl). I 11t ~~ -- .-l’lY - 1-1 + I’ - l-AIy, 1. (t”) fi,,-’ (4.1) 

Let us note the cases where Eq. (3.2) or the equivalent Eq. (4.1) is integrable either 
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exactly or approximately. We denote by X (t) the fundamental matrix of solutions of the 

following linear homogeneous system with the matrix A : 

dX I dt = AX, X (to) = E (4.2) 

1”. Let there be no measurements and let the perturbations acting on the system 

be equal to zero, i.e. let V = K 3 0. The general solution of systems (3.2) and (4.1). 

which are linear and homogeneous in this case, be of the form [4] 

D (t) = x (t) CX’ (t), Y (t) = [X’ (t)l-v-1X-~ (t) (4.3) 

This can be verified directly using Eq. (4.2). Determining the constant matrix C with 
allowance for initial conditions (3.2),(4.1), we obtain C = D,. 

2’. If I’ (t) m 0 (i.e. if there are no measurements) and if h (t) is arbitrary, then 

the solution of linear inhomogeneous system (3.2) can be obtained by applying the me- 

thod of variation of arbitrary constants and making use of solution (4.3) of the correspond- 
ing homogeneous system. Carrying out the usual computations and satisfying initial con- 

dition (3.Q we obtain 

o(t)=X(t){L& +j.x-l(?K(-C)[I’(~)I-ldr} X’(l) (4.4) 
to 

3’. For K (t) E 0 (zero perturbations acting on the object) system (3.2) remains 
nonlinear, but system (4.1) is linear and inhomogeneous. It is integrable by the method 

of variation of arbitrary constants using solution (4.3) of the corresponding homogeneous 
system. This yields 

Y(t)=D-r(r)= [X’(~)]-l[D~-l+~ X’(z)V(7)X(7)d+(t) (4.5) 
0 

which is analogous to (4.4). 
Solution (4.5) is obtained in [4], where optimal tracking problems for K = 0 are also 

considered. 
4’. Let the tracking errors be large, i.e. let the matrix V be expressible in the 

form V = aV,,where V, is a matrix with bounded elements and E <( 1 is a small para- 
meter. This enables us to seek the solution of system (3.2) in the form D = D” f ED’, 

where D” is given by Eq. (4.4). The matrix D1 satisfies the equation and initial condition 

dD’ / dt = AD’ + D’A * - D”V,DO, D1 (to) = 0 (4.6) 

to within higher-order small terms. 
The solution of linear inhomogeneous system (4.6) can be constructed in the same way 

as (4.4). It turns out to be t 

D’(t)=- X(t) {s X-l(7) D” (7) V,(t) D” (7) [X’ (t)]-l d7} X’ (t) (4.i) 

We have therefore construc:ed an approximate solution of Cauchy problem (3.2). 
5”. Let the intensity of the external perturbations be small, i. e. let K = ch*, ,where 

K, is a matrix with bounded elements, e 4 1. We shall seek the solution of problem 

(4.1) in the form Y = Y” + FYI, where Y” is given by Eq. (4.5). For Y1 we construct a 
linear inhomogeneous problem similar to problem (4.6). Its solution is similar in form 

to Eq. (4.7). , t 

Y’(t)=- [X’(t)]-1 [S-~‘(T)Y’ (z)Ke(7)Y0(7)X(7)dr 
1 

x-‘(t) (4.8) 

to 
We have thus obtained an approximate solution D = I’-’ = (I-’ + eYl)-’ of problem 

(3.2). 
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6”. Let us consider the important case where the measurements are made at dis- 
crete instants, i.e. where p 

v @) = 2, vk @) 6 tt - lkf, tO<h<...‘ \<GdT (4.9) 

Ir=t 

Here tk are the instants of measurement, r is their number, 6 is a delta function, and 
Vk (t) are matrix functions characterizing the composition and errors of individual meas- 
urements. In the intervals between measurement, i. e. for tk < t < tksl the solution of 
system (3.2) is similar in form to (4,4), 

t 

B ($1 = x(t) ( CI. + f x-1 fi) K(t) [X’ (Tfl-1 drj X’ (L) (4.20) 
t 

k 

CO = Do, tk < t < th+l 

Here Ck are constant matrices. Formulas (1.3) and notation (2. a), (3.1) give us the 
equations 13’ (tk + 0) = ft-r (tk - 0) + Vk (tk), k = i, . , ., r (4.11) 

The relations at discontinuities (4.11) give us the relationships between the constants 
C k for neighboring intervals. Equations (4.10).(4.11) represent the solution of problem 

(3.2) in case (4.9). These relations enable us to solve the problem of optimal choice of 
the measurement instants th in the interval Ito, T] from the standpoint of minimization 
of one of the functionals of the form (3.4). Here we can impose various additional restric- 
tions on the other functionals of the type (3.4). on the choice of the instants of measure- 
ment or their number, etc. Using relations (4. lo), (4. ll), we can reduce all of these prob- 
lems to linear programing problems (on the minimization of functions of the variables 
tk). 

6, The problem wfth contfnuou, trrcking, Let equation of motion 
(2.3) be of the form f&z ft) = Ias (t) + 6 (6 + 5 (t)j dt (5.i) 

Here x (t) is the sole phase coordinate, a is a constant, b (1) is a given function, and 
E (t) is the scalar random perturbation with the constant dispersion g. The tracking pro- 

cess consists in measuring the present value of the phase coordinate ; the dispersion of 
the measurement error per unit time at any instant is equal to the constant Bobor to infi- 
nity (when no measurements are made). In the notation adopted in Sects. 2-4 we have 

n=m=l=l, F=Q=l, A=a, V=O 
or 

BO-l, K=G=g 

where all of the matrices and vectors become scalars. 

Equation (4.l),which is equivalent to Eq. (3,2), becomes 

dYfdt= -&A’--qp+V, Y==D’ (5.2) 

Let the sum duration of the measurements be given and equal to To < T, let the initial 
condition be of the form D (0) = Do, and let our task be to find a tracking procedure 
which minimizes the dispersion D (2’) of the phase coordinate z (T) at the end of the 
process. The initial conditions, restrictions, and functional can therefore be written as 

Y (0) = Do-l, V (t) = 0 or V(t) =Boel, 1 = Y (T) 4 max 
T 

s f(v)dt=To<T, fp)=os f (Bo-‘f = 1 

0 

(5.3) 
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We can solve problem (5.2), (5.3) by means of the maximum principle. Let us con- 
struct the Hamiltonian, the associated equation, and the transversality condition 

~z r p c-P 2a>- - ~1.2 + 17) + p,, f (I ) + 1x1s with respect to I’ 

t/:1 , r/i sp (‘I -1 cl.,, p (7‘) z 1 ( ,rl ‘t j 

Here P (t) is the associated variable and 11~ is a constant. Maximum principle (5.4) 
and restrictions (5.3) on 1. imply that 1’ can be determined from the condition 

1’ (t) = B”_’ for cp (I) > 0, 1: (t) = 0 for cc (t) < 0 
‘{ II I po -;- p (t) IT,-’ ( .rl ,-I) 

It is clear that none of the solutions of associated equation except the trivial solution 
p (t) s (1 vanish anywhere. Since p (7’) > IU. this fact implies that p (t) ; o for 6 < t ,( 
$ T. Making use of Eqs. (5.2) and (5.4), we obtain 

d’p i tit’ ‘<II’ ,’ t/l (rr #IT) -1 2p:‘dET! r/l = “p [“r/7 + :‘l’)J m, 

_t g (- 2a17 - ;,JI~? + I’)] == 2p [(a + ,e\.)? -~- a’l -/- gV] > 0 

The latter inequality follows from the fact that 1. > il. p 1, O. For the function (1 (i) 
defined by Eq. (5. 5) we have, as for p (t). the inequality #c( / czt’ > (1, i.e. q (t) is a 
strictly convex function having not more than two tracking segments situated at the 

beginning and end of the interval (one of these segments may be lacking), i. e. 

I- (0 - B,_‘, 0 < t < t, (0 Q t, < I’,,) 

r’ (t) ~~ 0. f, < t < 7’ - (T” - t*i (T,.G) 

1’ (t) = Eo-‘, T - (I‘,, - t,) < t < 7 

Here t* is the temporarily unknown duration of the first tracking interval ; the duration 
of the second interval is clearly 7’” - t,. If I’ (1) is constant, then Eq, (5.2) is immedi- 
ately integrable. Its general solution in segments (5.6) is of the form 

ap 
Y(t) = q - g(Clr’3L + 1) , P = )/ad-!- cBo_‘, “< t < t, 

2n 
Y (t) = - 6 [c, ,sa(f-_t*) + l  ] > 

t* < t < ‘1’ -- To + t* 

Y (t) = 9 - 6 [c, ~?~(r-~~~.--r,) + 1l > T - To + t* < t < T 

The arbitrary constants Cr, C2. C,j can be determined from initial condition (5.3) and 
from the conditions of continuity of the function lY (t) at the switching points. These 

conditions yield a _ a ‘-P 
--- g(C1+1) I: 

= Do-l, p - a - c1 $Fe + 1 = - “a 
c,+ 1 

2a 2P - 
&?m-~O) i_ 1 ==P-a- &+I 

From this we obtain the required constants ; we can then use Eqs. (5.3), (5.7) to find 
the value of the functional J (a), 

P +a+~Do-’ 
C1=jj_._gDo-” Cr = 

yCrh-1 
r - Clh 
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The quantities introduced above satisfy the following inequalities : 

Y > 1, hl>l, Cl>,1 for a>O, Y d 1, A1 Q 1 for a < 0 (5.9) 
hlCT 

___ I=/$1 
hlfl <I9 

for all a 

Relations (5.8) enable us to express the functional J (X) in terms of the unknown L 

which depends on t,. The problem therefore reduces to one of finding the maximum of 

the function J (b) with respect to A in the interval 

Eliminating C, and c,~ from (5.8), we obtain 

(5.10) 

(5.11) 

r/J(k) _ “3 c- “fiTo 7 pl” _ ,) [A” Cl’ (“ph 12 - ,I) - 2ac,r (hl2 - 1) - (f - hl”)l 
--- 

tlh g A2 (IL) 

A (a) = h”yC1 (7”1” - 1) + h II’? - Al” + C$??BTyp’&? - I)] - ye?+“13 - 1) 

Let US denote the values of 1, for which J (A) attains a local maximum or minimum 

by A,,,,, and iV,,ll,, , respectively. 
Equating dJ : dX to zero and investigating the sign of dJ / dh we find from (5.11) with 

allowance for (5.9) that 

h 
1 ?.1 -_7 

z-p, 
h _ 1 Al+-T 

max Cl h1y - 1 m:n c1 hly I 1 
for Cl<0 

h max > ‘rnin (5.12) 

dJjdh<O for h>hmax, h<&,,, 

d Jldh > 0 for A,,, < a < %,,ax 

Let us find the optimal tracking law. 
Making use of relations (5.9).( 5.12), we find that hlnax < 1 for u > 0 . Conditions 

(5.12) indicate that dJ / & < 0 in interval (5. lo), i.e. that J (a) decreases in this 
interval. Hence, J (I) attains its maximum value for h = 1. The optimal tracking law 

for a > 0 is of the form 

V (t) = 0, O<t<T---T,, 1’ (t) = B,-l, T-T,<t<T (5.13) 

For a < 0 the optimal tracking law is of the form (5.6), where, depending on the para- 

meters of the problem, t, assumes one of the values 

t, = U, if h IllaX d 1 (5.14) 
t, =n, if 1 < L,, < @To, J (1 I), J (hmax) 

t, = In (&,,)PP, if 1 < h,,,,= d eYBTo, J (I) < J (I.,,,) 

L = To, if hrnin < 1, A,,,,, > ezfiTo 

t, = 0, if hr,lin > 1, h,,, > eZBTO, J (1) >J (e2BT0) 

t, = To, if hrnin> 1, A,,,,, > ezBTO, J(l)< J (eneTo) 

Relations (5.14) are obtainable from the condition of maximality of J (A) in interval 
(5.10) with allowance for conditions (5.12). 

Thus, Eqs. (5.13) and (5.5),( 5.14) constitute the optimal tracking law for a > 0 and 
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a < 0, respectively. 

Comparing these results with those obtained in [4] for a similar example in the absence 

of external perturbations (g = 0), we find that these perturbations generally have the 
effect of shifting the measurements towards the end of the interval 10, T]. 

6, Dlrcrets-tracking problemr.1’. Let the equation of motion of the sys- 
tem be of the form ds (t) = Ib (tf + E (01 dt (6.i) 

Here, as in the previous problem, z (t) is the sole phase coordinate, F, (t) is the scalar 
random perturbation with the constant dispersion g, and b (t) is a given function. Let the 
measurements of the phase coordinate be made at the discrete instants t k, k = i, . . . t *Y 
i.e. let r 

v (“I=: 2 Vk 6 tt - tic), to\<tl<...<&.<T 
k=l 

where the vk are constant. 
We are required to choose the tracking instants in such a way as to minimize the dis- 

persion D (T) of the phase coordinate at the end of the process. 

Equation (4.1) for this problem becomes 

dY/dt= -gyA+$-, Y (to) = 0,-l (6.2) 

Using formula (4.11) we find that 

Y (tk + 0) = Y (tk - 0) + Vk (k = 1, . . ., r) (6.3) 

Integrating Eq. (6.2) over the interval (t&,1, tk) with allowance for Eqs, (6.3), we 
obtain 

y (% + ‘1 = 
Y (t?c-l+ 0) 

1 + (tlr - tk_l) gy (t&-l + 0) + l.‘k (k=l, . . . . r) (6.4) 

D-1 (2’) = 
Y(tr+W 

1 +P’--tt,)gY(t,+o)f 

Let the instants t,_, and the value of Y (t,_r i 6) be known. Let us find the t, such 

that tr_r < t, < T and D-l (T) are maximum. Making use of (6.4). we obtain 

D-1(T)= 
vr + y (44 + 0) 11 + (5. - t,_11 @-,I 

* + (T - tr_l)gY (t,-l+ 0) + (T - tr)gv, [i +(tP - t,_l)gY (t,_l + o)] 

It is clear that D-1 (T) attains its maximum value at t, = T. Reasoning by induction 
as above, we obtain the following optimal tracking law: 

t1= 0 . . =t,=T 

i.e. all of the measurements are made at the end of the process. 
2“. Let us take the equations of motion of the system in the form 

dxl (t) / dt = x2, dx, (t) = lb (t) + E (t)l dt (6.5) 

Here 21 (t) is the coordinate, z2 (t) is the velocity, b (t) is a given function, and 

E (t) is the random perturbation. We assume that the intensity of the perturbation is low, 
i.e. that 0 0 

x(t) = EK* (t) = e 
il II 0 g* 

(6.6) 

Here E < 1 is a small parameter and g, is a constant. 
Let measurements of the coordinate be made at the discrete instants fk, h = i, . . . , r, 

and let the meas~ement errors be large, 
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Here Vk are constants. We are required to choose the instants of measurement in such 

a way as to minimize the dispersion of the coordinate at the end of the process. 

Making use of relations(4. lo), (4.11) and limiting ourselves to terms of the first order 
of smallness in e, we obtain the following recursion relations : 

tk D (tk + 0) = D @LA + 0) + 
1 .o 

+ x (tk) 
{S 

x-‘(t)K(t)[X’tz)l-‘dz 

‘k-1 
I 

x’(tk)--D(tk_l+O)~k o o D(tk_l+O), 
11 II 

D (to? = Do (k = 1, . . ., r) (6.7) 

Here X (t) is the fundamental matrix of solutions of the linear homogeneous system. 
it is given by 

x(t)= ;; II II (6.8) 

Recursion relations (6.7) together with (6.6). (6.8) yield the following equations accu- 
rate to within higher-order terms: r 

10 
D(T)= Do+% 

dn &a 

II II 
- 

&I T 
e ;I) VkDo 

II II 00 
Do 

k=l 

I j=;( - tk_l)s, 
r+1 

(6.9) 

dn = T,! tk d12= d21= + 2 (tk - tk_1)2 

k=l k=l 

The problem of minimum dispersion of the coordinate reduces to finding the minimum 
of the element 

dn = + $ (tk - tk_l)‘, to<t1<... d t, dtr+l= T 

k=l 

It is easy to show that the required minimum is attained for 
T-to 

t =-k k r+l 
(k=I, . . . . r) 

Thus, the optimal tracking law for the above problem is as follows: all of the instants 
of measurement must be distributed uniformly over the interval [to,Tl. 

We note that the dispersion of the velocity at the end of the process does not depend 

on the choice of instants of measurement. 
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